Bombardia bombarda
This genome was sequenced as part of the JGI CSP 1KFG - Deep Sequencing of Ecologically-relevant Dikarya, whose goal is to fill in gaps in the Fungal Tree of Life by sequencing at least two reference genomes from the more than 500 recognized families of Fungi. This project additionally aims to inform research on plant-microbe interactions, microbial emission and capture of greenhouse gasses, and environmental metagenomic sequencing.
The sequenced Bombardia bombarda isolate SMH3391-2 has been isolated from log, cut end & branches. Bombardia species possess a bombardioid ascomal wall, which contains a putatively stromatic gelatinized layer composed of interwoven hyphae (Lundqvist 1972, Huhndorf, Miller et al. 2004). Bombardia bombarda belongs to Lasiosphaeriaceae II, sensu Kruys, Huhndorf et al. (2015). Sordariales is a taxonomically rich group containing ca. 35 genera (Huhndorf, Miller et al. 2004, Kruys, Huhndorf et al. 2015), spanning more than 75 million years of association with plant biomass (Saupe, Clavé et al. 2000). Sordariales can be sampled on a range of substrates such as dung, wood, leaves, litter, burned vegetation, biological soil crusts and soil; most are saprobes, but some live in close association with plants as endophytes and few have been described as pathogens. Sordariales also exhibit striking differences in temperature requirements, ranging from mesophilic to thermophilic. Unraveling the genomic features reflecting their ability to efficiently forage their substrate will represent foundational information for understanding the role of saprophilous, lignicolous, herbicolous and coprophilous fungi in nutrient and energy flows within ecosystems. In addition, these resources will facilitate the rational design of improved thermophilic and/or biomass degrading fungal host strains, and help field studies aiming to predict responses of fungal communities to environmental changes, such as global warming.
Researchers who wish to publish analyses using data from unpublished CSP genomes are respectfully required to contact the PI and JGI to avoid potential conflicts on data use and coordinate other publications with the CSP master paper(s).
References
Huhndorf, S. M., A. N. Miller and F. A. Fernández (2004). "Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined." Mycologia 96(2): 368-387.
Kruys, Å., S. M. Huhndorf and A. N. Miller (2015). "Coprophilous contributions to the phylogeny of Lasiosphaeriaceae and allied taxa within Sordariales (Ascomycota, Fungi)." Fungal Diversity 70(1): 101-113.
Lundqvist N (1972) "Nordic Sordariaceae s. lat." Symb Bot Ups.
Saupe, S. J., C. Clavé, M. Sabourin and J. Bégueret (2000). "Characterization of hch, the Podospora anserina homolog of the het-c heterokaryon incompatibility gene of Neurospora crassa." Current genetics 38(1): 39-47.
Genome Reference(s)
Hensen N, Bonometti L, Westerberg I, Brännström IO, Guillou S, Cros-Aarteil S, Calhoun S, Haridas S, Kuo A, Mondo S, Pangilinan J, Riley R, LaButti K, Andreopoulos B, Lipzen A, Chen C, Yan M, Daum C, Ng V, Clum A, Steindorff A, Ohm RA, Martin F, Silar P, Natvig DO, Lalanne C, Gautier V, Ament-Velásquez SL, Kruys Å, Hutchinson MI, Powell AJ, Barry K, Miller AN, Grigoriev IV, Debuchy R, Gladieux P, Hiltunen Thorén M, Johannesson H
Genome-scale phylogeny and comparative genomics of the fungal order Sordariales.
Mol Phylogenet Evol. 2023 Oct 10;189():107938. doi: 10.1016/j.ympev.2023.107938