Status
[Dec 2013] The Dendrothele bispora genome was sequenced using Illumina HiSeq and PacBio reads. Illumina sequences were assembled using AllPathsLG, and gaps were subsequently closed by PacBio sequences using PBJelly.
Summary statistics for the Dendrothele bispora CBS 962.96
v1.0 release are below.
Genome Assembly | |
Genome Assembly size (Mbp) | 130.65 |
Sequencing read coverage depth | 103x |
# of contigs | 6351 |
# of scaffolds | 3942 |
# of scaffolds >= 2Kbp | 2906 |
Scaffold N50 | 302 |
Scaffold L50 (Mbp) | 0.12 |
# of gaps | 2409 |
% of scaffold length in gaps | 3.6% |
Three largest Scaffolds (Mbp) | 1.60, 0.90, 0.72 |
ESTs | Data set | # sequences total | # mapped to genome | % mapped to genome |
Ests | RNNotator assembled Illumina ESTs | 48157 | 44260 | 91.9% |
Gene Models | FilteredModels1 | |
length (bp) of: | average | median |
gene | 1556 | 1227 |
transcript | 1162 | 915 |
exon | 228 | 141 |
intron | 98 | 61 |
description: | ||
protein length (aa) | 356 | 275 |
exons per gene | 5.09 | 4 |
# of gene models | 33645 |
Collaborators
Joseph
Spatafora, Oregon State University, USA
David
Hibbett and Laszlo
Nagy at Clark University, Worcester, MA.
Genome Reference(s)
Please cite the following publication(s) if you use the data from this genome in your research:
Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonín V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasiński D, Kautmanova I, Kiss B, Kocsubé S, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomšovský M, Tulloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG
Megaphylogeny resolves global patterns of mushroom evolution.
Nat Ecol Evol. 2019 Apr;3(4):668-678. doi: 10.1038/s41559-019-0834-1
Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonín V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasiński D, Kautmanova I, Kiss B, Kocsubé S, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomšovský M, Tulloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG
Megaphylogeny resolves global patterns of mushroom evolution.
Nat Ecol Evol. 2019 Apr;3(4):668-678. doi: 10.1038/s41559-019-0834-1
Links
Agaricomycotina on MycoCosm
Funding
The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.