Home • Mycothermus thermophilus CBS 62091
Photo of Mycothermus thermophilus CBS 62091
Photo credit: Genevieve Quenneville, Sandrine Marqueteau and Marie-Claude Moisan

The genome sequence and gene prediction of Mycothermus thermophilus CBS 62091 have not been determined by the Joint Genome Institute (JGI), but were downloaded from CSFG on July 31, 2022. In order to allow comparative analyses with other fungal genomes sequenced by the JGI, a copy of this genome is incorporated into Mycocosm. Please note that this copy of the genome is not automatically updated. JGI tools were used to automatically annotate predicted proteins.

Mycothermus thermophilus, previously named Scytalidium thermophilum (1), is a thermophilic fungus with growth optimum at 45 °C (2). Mycothermus thermophilus is able to grow in hemicellulosic substrates. Several enzymes involved in cellulose and hemicellulose degradation such as alpha-amylase (3), glucoamylase (4), β-glucosidase (5), β-xylosidase (6), endoglucanase (7); alkaline phosphatase (8); trehalase (9); and cellulases (10,11) have been characterized. Several enzymes have a temperature optima of 55 °C or above. Mycothermus thermophilus stimulates the growth of Agaricus bisporus in compost (12). The study of M. thermophilus genome will provide a source of information regarding thermostable enzymes involved in biomass degradation.

Note: If you intend to publish any articles including Mycothermus thermophilus CBS 62091 genomic data, please contact Adrian Tsang for permission prior to publication: [email protected]



1. Natvig DO, Taylor JW, Tsang A, Hutchinson MI, Powell AJ. Mycothermus thermophilus gen. et comb. nov., a new home for the itinerant thermophile Scytalidium thermophilum (Torula thermophila). Mycologia. 2015 Mar-Apr;107(2):319-27.
2. Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A. A molecular phylogeny of thermophilic fungi. Fungal Biol. 2012 Apr;116(4):489-502.
3. Aquino A C M M, Jorge J A, Terenzi H F, Polizeli M L T M. Studies on a thermostable alpha-amylase from the thermophilic fungus Scytalidium thermophilum. Applied Microbiology and Biotechnology 2003, 61:323-328 
4. Cereia M, Terenzi H F, Jorge J A, Greene L J, Rosa J C, Polizeli M D T M Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. Biochemical and regulatory properties. J. Basic Microbiol. 2000,40: 83–92
5. Zanoelo FF, Polizeli Mde L, Terenzi HF, Jorge JA. Beta-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett. 2004 Nov 15;240(2):137-43.
6. Zanoelo FF, Polizeli Md Mde L, Terenzi HF, Jorge JA. Purification and biochemical properties of a thermostable xylose-tolerant beta- D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol. 2004 May;31(4):170-6. 
7. Arifoglu N, Ögel ZB. Avicel-adsorbable endoglucanase production by the thermophilic fungus Scytalidium thermophilum type culture Torula thermophila. Enzyme Microb Technol. 2000, 27(8):560-569. 
8. Guimarães LH, Terenzi HF, Jorge JA, Polizeli ML. Thermostable conidial and mycelial alkaline phosphatases from the thermophilic fungus Scytalidium thermophilum. J Ind Microbiol Biotechnol. 2001, 27:265-270
9. Kadowaki MK, Polizeli ML, Terenzi HF, Jorge JA. Characterization of trehalase activities from the thermophilic fungus Scytalidium thermophilum. Biochim Biophys Acta. 1996, 1291(3):199-205. 
10. Boonlue S, Aimi T, Morinaga T. Molecular characterization of a xylanase-producing thermophilic fungus isolated from Japanese soil. Curr Microbiol. 2003, 47:119-124.
11. Boonlue S, Aimi T, Kitamoto Y and Morinaga T. Nucleotide sequence of a GH11 family xylanase encoding gene in Scytalidium thermophilum. DNA Seq. 2008,19(3):366-370.
12. Straatsma G, Olijnsma TW, Gerrits JP, Amsing JG, Op Den Camp HJ, Van Griensven LJ. Inoculation of Scytalidium thermophilum in Button Mushroom Compost and Its Effect on Yield. Appl Environ Microbiol. 1994 Sep;60(9):3049-54.