Home • Morchella tridentina NRRL 54570 v1.0
Morchella tridentina, photographed near Aracena, Spain [Image
credit: Luis Romero de la Osa]
Morchella tridentina, photographed near Aracena, Spain [Image credit: Luis Romero de la Osa]

In the "1KFG: Deep Sequencing of Ecologically-relevant Dikarya" project (CSP1974), we aim to sequence additional sampling of genomic diversity within keystone lineages of plant-interacting fungi and saprophytic fungi that are of special ecological importance for understanding terrestrial ecosystems. In addition, comparative genome analysis with saprotrophic, mycorrhizal and pathogenic fungi will provide new insights into the specific and conserved adaptations associated with each fungal lifestyle.

Within the framework of CSP1974, we are sequencing phylogenetically and morphologically diverse species of Morchellaceae. These fungi include economically important edible morels (Morchella), putatively toxic false-morels (Verpa), and the edible hypogeous truffle genera Leucangium and Kalapuya (1–3). The ecology of these taxa is still poorly understood. Some Morchella species are suspected to be mycorrhizal symbionts (4), others grow as endophytes within plant roots (5,6), some farm bacteria (7), but the majority of species (including the cultivated species of morels) are considered to be general saprotrophs (8,9). The Morchellaceae lineage is hypothesized to have originated and radiated in the Northern Hemisphere, later dispersing into Southern hemisphere regions (10). Genomic data generated by this project will be used to better identify genomic features underlying the distinct ecology, diversity, and morphology of Morchellaceae fungi.

Here we present the genome of M. tridentina, a basal taxon within the Elata clade of black morels. Originally described from Italy and distributed across Europe, M. tridentina also grows in western North America and South America (11 - 13). Morchella tridentina fruits in the spring in mixed forests and shrublands located in mountainous and Mediterranean habitats. Fruit bodies grow in solitaire or scattered, and have pale-colored conical caps. Their caps have vertical ridges with sinus at the junction between the stipe and cap, as is typical of black morels. However, M. tridentina are distinguished from other black morels by the ridges of the cap that redden as they mature, rather than darking as with other members in the Elata clade. The isolate sequenced here, NRRL 54570, was collected in California, USA.

Researchers who wish to publish analyses using data from unpublished CSP genomes are respectfully required to contact the PI and JGI to avoid potential conflicts on data use and coordinate other publications with the CSP master paper(s).



  1. O’Donnell, K., Cigelnik, E., Weber, N. S. & Trappe, J. M. Phylogenetic Relationships among Ascomycetous Truffles and the True and False Morels Inferred from 18S and 28S Ribosomal DNA Sequence Analysis. Mycologia 89, 48–65 (1997).
  2. Gecan, J. S. & Cichowicz, S. M. Toxic Mushroom Contamination of Wild Mushrooms in Commercial Distribution. J. Food Prot. 56, 730–734 (1993).
  3. Trappe, M. J., Trappe, J. & Bonito, G. Kalapuya brunnea gen. & sp. nov. and its relationship to the other sequestrate genera in Morchellaceae. Mycologia 102, 1058–1065 (2010).
  4. Buscot, F. Mycorrhizal succession and morel biology. Mycorrhizas in ecosystems 220–224 (1992).
  5. Masaphy, S., Zabari, L., Goldberg, D. & Jander-Shagug, G. The complexity of Morchella systematics: a case of the yellow morel from Israel. Fungi 3, 14–18 (2010).
  6. Baynes, M., Newcombe, G., Dixon, L., Castlebury, L. & O’Donnell, K. A novel plant–fungal mutualism associated with fire. Fungal Biol. 116, 133–144 (2012).
  7. Pion, M., Spangenberg, J. E., Simon, A., Bindschedler, S., Flury, C., Chatelain, A., Bshary, R., Job, D. & Junier, P. Bacterial farming by the fungus Morchella crassipes. Proc. Biol. Sci. 280, 20132242 (2013).
  8. Benucci, G. M. N., Longley, R., Zhang, P., Zhao, Q., Bonito, G. & Yu, F. Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses. PeerJ 7, e7744 (2019).
  9. Hobbie, E. A., Rice, S. F., Weber, N. S. & Smith, J. E. Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska. Mycologia 108, 638–645 (2016).
  10. O’Donnell, K., Rooney, A. P., Mills, G. L., Kuo, M., Weber, N. S. & Rehner, S. A. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genet. Biol. 48, 252–265 (2011).
  11. Pildain, M. B., Visnovsky, S. B., & Barroetaveña. C. Phylogenetic Diversity of True Morels (Morchella), the Main Edible Non-Timber Product from Native Patagonian Forests of Argentina. Fungal Biology 118, 755–763 (2014).
  12. Kuo, M., Dewsbury, D. R., O'Donnell, K., Carter, M. C., Rehner, S. A., Moore, J. D., Moncalvo, J., Canfield, S. A., Stephenson, S. L., Methven, A. S., & Volk, T. J. Taxonomic revision of true morels (Morchella) in Canada and the United States, Mycologia, 104:5, 1159-1177 (2012).
  13. Richard, F., Bellanger, J., Clowez, P., Hansen, K., O’Donnell, K., Urban, A., Sauve, M., Courtecuisse, R., & Moreau, P. True Morels (Morchella, Pezizales) of Europe and North America: Evolutionary Relationships Inferred from Multilocus Data and a Unified Taxonomy. Mycologia. 107, 359–82 (2015).