Home • Oudemansiella mucida CBS 558.79 v1.0
Oudemansiella mucida, by J.M. Barrasa.
Oudemansiella mucida, by J.M. Barrasa.

Oudemansiella mucida (Schrad.) Höhn. is commonly known as “porcelain fungus” due to the pale grayish to whitish ivory fruitbody, which is frequently covered with a slimy and semi-translucent membrane. This is a saprobic white-rot wood fungus (sometimes weakly parasitic) and specific to beech (Fagus sylvatica) wood, where it grows and fruits in clusters on trunks and branches. Less frequently, it can also fruit on dead high up branches of living beech trees. It is widespread throughout Europe following beech distribution. O. mucida eliminates competition with other fungi when it is growing on beech trees by production of the anti-fungal agent strobilurin, used in agricultural treatments (Anke, 1995). It is also known for the secretion of chlorinated metabolites (de Jong et al. 1994).

Molecular phylogenetic analysis includes this fungus in the Marasmioid clade of the order Agaricales and Physalacriaceae family (Matheny et al., 2006). According to different wood colonization strategies developed by fungi (Coates and Rayner, 1985), saprobic members of this family can be included in two different ecophysiological groups: i) wood decomposers, such as O. mucida; and ii) buried or partially-decayed wood decomposers, such as Hymenopellis radicata and Strobilurus esculentus (which are also proposed to be sequenced in JGI CSP-1609 project). The genome sequencing of O. mucida will allow comparison of lignocellulolytic enzymatic machinery of three phylogenetically related species belonging to two different ecophysiological groups. Furthermore, the genome sequence of the wood rotting fungus O. mucida will facilitate comparison with those of the order Polyporales (the most specialized Basidiomycetes group in lignin wood degradation), that includes white-rot and brown-rot decay patterns originated by expansion and contractions of ligninolytic peroxidases genes throughout fungal evolution (Floudas et al., 2012; Ruiz-Dueñas et al, 2013).

Interestingly, periplasmic/extracellular manganese peroxidase and pyranose 2-oxidase (a H2O2-generating enzyme) were reported during wood degradation by O. mucida using biochemical and transmission electron microscopy-immunocytochemistry techniques (Daniel et al., 1994). Furthermore, both pyranose 2-oxidase and manganese peroxidase were also detected in extracts from degraded wood, suggesting a synergic action of both enzymes during white-rot wood decay by this fungus.

The knowledge of the enzymatic machinery of fungi involved in lignin degradation at different stages of wood decay would be relevant to our best understanding of carbon recycling in land ecosystems, to mitigate the climate change and to improve a bio-based economy.

Genome Reference(s)


Anke, T., 1995. The antifungal strobilurins and their possible ecological role. Canadian Journal of Botany, 73(S1): 940-945.

Coates, D. and Rayner, A.D.M., 1985. Fungal population and community development in cut beech logs. III: Spatial dynamics, interactions and strategies. New Phytologist 101,183-198.

Daniel, G., Volc, J. and Kubatova, E., 1994. Pyranose Oxidase, a Major Source of H2O2 during Wood Degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Applied and Environmental Microbiology, 60: 2524-2532.

de Jong, E., J. A. Field, H. E. Spinnler, J. B. P. A. Wijnberg, and J. A. M. de Bont. 1994. Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl.Environ.Microbiol. 60:264-270.

Floudas, D., M. Binder, R. Riley, K. Barry, R. A. Blanchette, B. Henrissat, A. T. Martínez, R. Otillar, J. W. Spatafora, J. S. Yadav, A. Aerts, I. Benoit, A. Boyd, A. Carlson, A. Copeland, P. M. Coutinho, R. P. de Vries, P. Ferreira, K. Findley, B. Foster, J. Gaskell, D. Glotzer, P. Górecki, J. Heitman, C. Hesse, C. Hori, K. Igarashi, J. A. Jurgens, N. Kallen, P. Kersten, A. Kohler, U. Kües, T. K. A. Kumar, A. Kuo, K. LaButti, L. F. Larrondo, E. Lindquist, A. Ling, V. Lombard, S. Lucas, T. Lundell, R. Martin, D. J. McLaughlin, I. Morgenstern, E. Morin, C. Murat, M. Nolan, R. A. Ohm, A. Patyshakuliyeva, A. Rokas, F. J. Ruiz-Dueñas, G. Sabat, A. Salamov, M. Samejima, J. Schmutz, J. C. Slot, F. St.John, J. Stenlid, H. Sun, S. Sun, K. Syed, A. Tsang, A. Wiebenga, D. Young, A. Pisabarro, D. C. Eastwood, F. Martin, D. Cullen, I. V. Grigoriev, and D. S. Hibbett. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715-1719.

Matheny, P.B., Curtis, J.M., Hofstetter, V., Aime, M.C., Moncalvo, J.M., Ge, Z.W., Yang, Z.L., Slot, J.C., Ammirati, J.F., Baroni, T.J., Bougher, N.L., Hughes, K.W., Lodge, D.J., Kerrigan, R.W., Seidl, M.T., Aanen, D.K., DeNitis, M., Daniele, G.M., Desjardin, D.E., Kropp, B.R., Norvell, L.L., Parker, A., Vellinga, E.C., Vilgalys, R., Hibbett, D.S., 2006. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98, 982-995.

Ruiz-Dueñas, F. J., T. Lundell, D. Floudas, L. G. Nagy, J. M. Barrasa, D. S. Hibbett, and A. T. Martínez. 2013. Lignin-degrading peroxidases in Polyporales: An evolutionary survey based on ten sequenced genomes. Mycologia 105:1428-1444.